Part Number Hot Search : 
LD1AV2Q TCS230 X9511 CDLL4775 B647A ASD01 KBP101G K1525CDB
Product Description
Full Text Search
 

To Download AUIRF2905ZSTRL Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 PD - 96320
AUTOMOTIVE GRADE
AUIRFR2905Z
HEXFET(R) Power MOSFET
V(BR)DSS
Features
l l l l l l l
D
55V 11.1m 14.5m
59A k 42A
Advanced Process Technology Ultra Low On-Resistance 175C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified *
RDS(on) typ.
G S
max.
ID (Silicon Limited) ID (Package Limited)
D
Description
Specifically designed for Automotive applications, this HEXFET(R) Power MOSFET utilizes the latest processing techniques to achieve extremely low on-resistance per silicon area. Additional features of this design are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications.
D-Pak AUIRFR2905Z
G D S
G
D
S
Absolute Maximum Ratings
Gate
Drain
Source
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied.Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (TA) is 25C, unless otherwise specified.
Parameter
Max.
ID @ TC = 25C ID @ TC = 100C ID @ TC = 25C IDM PD @TC = 25C VGS EAS EAS (Tested ) IAR EAR TJ TSTG
Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V (Package Limited) Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy(Thermally limited) Single Pulse Avalanche Energy Tested Value Avalanche CurrentA Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds Mounting Torque, 6-32 or M3 screw
h
d
g
59 42k 42 240 110 0.72 20 55 82 See Fig.12a, 12b, 15, 16 -55 to + 175
k
Units
A
W W/C V mJ A mJ C
300 (1.6mm from case ) 10 lbfyin (1.1Nym)
Thermal Resistance
RJC Junction-to-Case RJA Junction-to-Ambient (PCB mount) RJA Junction-to-Ambient HEXFET(R) is a registered trademark of International Rectifier. *Qualification standards can be found at http://www.irf.com/
j
Parameter
Typ.
Max.
1.38 50 110
Units
C/W
i
--- --- ---
www.irf.com
1
07/20/10
AUIRFR2905Z
Static Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
V(BR)DSS V(BR)DSS/TJ RDS(on) VGS(th) gfs RG IDSS IGSS Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Forward Transconductance Gate Input Resistance Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage
Min. Typ. Max. Units
55 --- --- 2.0 20 --- --- --- --- --- --- 0.053 11.1 --- --- 1.3 --- --- --- --- --- --- 14.5 4.0 --- --- 20 250 200 -200
Conditions
V VGS = 0V, ID = 250A V/C Reference to 25C, ID = 1mA m VGS = 10V, ID = 36A V VDS = VGS, ID = 250A S VDS = 25V, ID = 36A f = 1MHz, open drain VDS = 55V, VGS = 0V A VDS = 55V, VGS = 0V, TJ = 125C VGS = 20V nA VGS = -20V
e
Dynamic Electrical Characteristics @ TJ = 25C (unless otherwise specified)
Parameter
Qg Qgs Qgd td(on) tr td(off) tf LD LS Ciss Coss Crss Coss Coss Coss eff. Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance Internal Source Inductance Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance
Min. Typ. Max. Units
--- --- --- --- --- --- --- --- --- --- --- --- --- --- --- 29 7.7 12 14 66 31 35 4.5 7.5 1380 240 120 820 190 300 44 --- --- --- --- --- --- --- nH --- --- --- --- --- --- --- nC
Conditions
ID = 36A VDS = 44V VGS = 10V VDD = 28V ID = 36A RG = 15 VGS = 10V Between lead,
e e
ns
D
6mm (0.25in.) from package
G
pF
S and center of die contact VGS = 0V VDS = 25V = 1.0MHz VGS = 0V, VDS = 1.0V, = 1.0MHz VGS = 0V, VDS = 44V, = 1.0MHz VGS = 0V, VDS = 0V to 44V
f
Diode Characteristics
Parameter
IS ISM VSD trr Qrr ton Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode)A Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time
Min. Typ. Max. Units
--- --- --- --- --- --- --- --- 23 16 42k 240 1.3 35 24 V ns nC A
Conditions
MOSFET symbol showing the integral reverse p-n junction diode. TJ = 25C, IS = 36A, VGS = 0V TJ = 25C, IF = 36A, VDD = 28V di/dt = 100A/s
e
e
Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)
2
www.irf.com
AUIRFR2905Z
Qualification Information
Automotive (per AEC-Q101) Qualification Level
Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level. D PAK MSL1 Class M3(400V) (per AEC-Q101-002) Class H1A(500V) (per AEC-Q101-001) Class C5 (1125V) (per AEC-Q101-005) Yes
Moisture Sensitivity Level Machine Model Human Body Model Charged Device Model RoHS Compliant
ESD
Qualification standards can be found at International Rectifiers web site: http//www.irf.com/
Exceptions to AEC-Q101 requirements are noted in the qualification report.
www.irf.com
3
AUIRFR2905Z
1000
TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
1000
TOP VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V
ID, Drain-to-Source Current (A)
100
BOTTOM
ID, Drain-to-Source Current (A)
100
BOTTOM
10
10
4.5V
1
4.5V 60s PULSE WIDTH Tj = 25C
0.1 0.1 1 10 100
1 0.1 0 1 1
60s PULSE WIDTH Tj = 175C
10 10 100 100
VDS, Drain-to-Source Voltage (V)
VDS, Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
1000.0
50
Gfs, Forward Transconductance (S)
ID, Drain-to-Source Current ()
T J = 175C 40
100.0
T J = 175C
30 T J = 25C 20
10.0
T J = 25C
VDS = 25V 60s PULSE WIDTH
1.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
10 VDS = 15V 380s PULSE WIDTH 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A)
VGS, Gate-to-Source Voltage (V)
Fig 3. Typical Transfer Characteristics
Fig 4. Typical Forward Transconductance Vs. Drain Current
4
www.irf.com
AUIRFR2905Z
2400 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd
20
ID= 36A VDS= 44V VDS= 28V VDS= 11V
2000
VGS, Gate-to-Source Voltage (V)
16
C, Capacitance (pF)
1600
Ciss
1200
12
8
800
400
Coss Crss
4
FOR TEST CIRCUIT SEE FIGURE 13
0 1 10 100
0 0 10 20
30
40
50
VDS, Drain-to-Source Voltage (V)
QG Total Gate Charge (nC)
Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage
Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage
1000.0
1000
OPERATION IN THIS AREA LIMITED BY R DS(on)
100.0 T J = 175C 10.0 T J = 25C 1.0 VGS = 0V 0.1 0.2 0.6 1.0 1.4 1.8 2.2 VSD, Source-toDrain Voltage (V)
ID, Drain-to-Source Current (A)
ISD, Reverse Drain Current (A)
100
10
100sec
1 Tc = 25C Tj = 175C Single Pulse 1 10
1msec 10msec
0.1
100
1000
VDS , Drain-toSource Voltage (V)
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 8. Maximum Safe Operating Area
www.irf.com
5
AUIRFR2905Z
70 60
ID , Drain Current (A)
2.0
50 40 30 20 10 0 25 50 75 100 125 150 175 T C , Case Temperature (C)
RDS(on) , Drain-to-Source On Resistance (Normalized)
LIMITED BY PACKAGE
ID = 36A VGS = 10V
1.5
1.0
0.5 -60 -40 -20 0 20 40 60 80 100 120 140 160 180
T J , Junction Temperature (C)
Fig 9. Maximum Drain Current Vs. Case Temperature
Fig 10. Normalized On-Resistance Vs. Temperature
10
Thermal Response ( Z thJC )
1
D = 0.50 0.20 0.10 0.05 0.02 0.01
J R1 R1 J 1 2 R2 R2 R3 R3 3 C 3
0.1
1
2
Ri (C/W) i (sec) 0.3962 0.00012 0.5693 0.00045 0.4129 0.0015
0.01
SINGLE PULSE ( THERMAL RESPONSE )
0.001 1E-006 1E-005 0.0001
Ci= i/Ri Ci i/Ri
Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc
0.01 0.1
0.001
t1 , Rectangular Pulse Duration (sec)
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
6
www.irf.com
AUIRFR2905Z
EAS, Single Pulse Avalanche Energy (mJ)
15V
240
200
VDS
L
DRIVER
ID 36A 8.6A BOTTOM 4.8A
TOP
160
RG
20V VGS
D.U.T
IAS tp
+ V - DD
A
120
0.01
80
Fig 12a. Unclamped Inductive Test Circuit
V(BR)DSS tp
40
0 25 50 75 100 125 150 175
Starting T J, Junction Temperature (C)
I AS
Fig 12b. Unclamped Inductive Waveforms
QG
Fig 12c. Maximum Avalanche Energy Vs. Drain Current
10 V
QGS
QGD
VGS(th) Gate threshold Voltage (V)
4.5
VG
4.0
Charge
3.5
Fig 13a. Basic Gate Charge Waveform
Current Regulator Same Type as D.U.T.
ID = 250A
3.0
50K 12V .2F .3F
2.5
D.U.T. VGS
3mA
+ V - DS
2.0 -75 -50 -25 0 25 50 75 100 125 150 175
T J , Temperature ( C )
IG ID
Current Sampling Resistors
Fig 13b. Gate Charge Test Circuit
Fig 14. Threshold Voltage Vs. Temperature
www.irf.com
7
AUIRFR2905Z
1000
Duty Cycle = Single Pulse
Avalanche Current (A)
100
0.01
10
0.05 0.10
Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax
1
0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
Fig 15. Typical Avalanche Current Vs.Pulsewidth
60
EAR , Avalanche Energy (mJ)
50
TOP Single Pulse BOTTOM 1% Duty Cycle ID = 36A
40
30
20
10
0 25 50 75 100 125 150
Starting T J , Junction Temperature (C)
Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. 175 D = Duty cycle in avalanche = tav *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav
Fig 16. Maximum Avalanche Energy Vs. Temperature
8
www.irf.com
AUIRFR2905Z
D.U.T
Driver Gate Drive P.W. Period VGS=10V
+
P.W.
Period
D=
+
Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer
*
D.U.T. ISD Waveform Reverse Recovery Current Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt
-
-
+
RG
* dv/dt controlled by R G * Driver same type as D.U.T. * I SD controlled by Duty Factor "D" * D.U.T. - Device Under Test
V DD
VDD
+ -
Re-Applied Voltage Inductor Curent
Body Diode
Forward Drop
Ripple 5%
ISD
* VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs
RD
V DS V GS RG 10V
Pulse Width 1 s Duty Factor 0.1 %
D.U.T.
+
-V DD
Fig 18a. Switching Time Test Circuit
VDS 90%
10% VGS
td(on) tr t d(off) tf
Fig 18b. Switching Time Waveforms
www.irf.com
9
AUIRFR2905Z
D-Pak (TO-252AA) Package Outline
Dimensions are shown in millimeters (inches)
D-Pak (TO-252AA) Part Marking Information
Part Number
AUFR2905Z
IR Logo
YWWA
XX or XX
Date Code Y= Year WW= Work Week A= Automotive, Lead Free
Lot Code
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/
10
www.irf.com
AUIRFR2905Z
D-Pak (TO-252AA) Tape & Reel Information
Dimensions are shown in millimeters (inches)
TR TRR TRL
16.3 ( .641 ) 15.7 ( .619 )
16.3 ( .641 ) 15.7 ( .619 )
12.1 ( .476 ) 11.9 ( .469 )
FEED DIRECTION
8.1 ( .318 ) 7.9 ( .312 )
FEED DIRECTION
NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.
13 INCH
16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481.
Notes:
Repetitive rating; pulse width limited by
max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25C, L = 0.08mH RG = 25, IAS = 36A, VGS =10V. Part not recommended for use above this value. Pulse width 1.0ms; duty cycle 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS .
Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population. 100% tested to this value in production. When mounted on 1" square PCB (FR-4 or G-10 Material) . application note #AN-994 R is measured at TJ approximately 90C Calculated continuous current based on maximum allowable junction temperature. Package limitation current is 42A
www.irf.com
11
AUIRFR2905Z
Ordering Information
Base part AUIRFR2905Z Package Type DPak Standard Pack Form Tube Tape and Reel Tape and Reel Left Tape and Reel Right Quantity 75 2000 3000 3000 Complete Part Number AUIRFR2905Z AUIRFR2905ZTR AUIRF2905ZSTRL AUIRF2905ZSTRR
12
www.irf.com
AUIRFR2905Z
IMPORTANT NOTICE
Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended for use in automotive applications or environments unless the specific IR products are designated by IR as compliant with ISO/TS 16949 requirements and bear a part number including the designation "AU". Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, IR will not be responsible for any failure to meet such requirements For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/ WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
www.irf.com
13


▲Up To Search▲   

 
Price & Availability of AUIRF2905ZSTRL

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X